PSYCH OpenIR  > 社会与工程心理学研究室
基于面部视频分析的大五人格特征自动识别技术研究
其他题名Identifving Big Five Personality Traits Based on Facial Video Analysis
蔡磊
导师刘晓倩
2022-12
摘要人格是指个体在社会适应中对他人、对事物、对自己行为的内在倾向和心理特征。人格影响着个人消费习惯、表现能力、人际交往、心理健康,甚至政治立场等众多方面。人格理论也在各个领域和行业都得到了广泛的应用。例如在招聘中,对人格的准确评估,有助于全面了解应聘者的个性特点并辅助预测其岗位匹配能力。对人格的研究一直以来都是非常重要的课题,且人格评估技术是研究人格必不可少的方法。传统的人格评估方法大多以自我报告形式(量表)为主,虽有较高的评估精准性,但在施测效率等方面仍存在不足。 近年来,随着计算技术的飞速发展,人工智能与心理学的跨界融合研究为心理学研究提供了一种新的思路和方法。现如今社交媒体平台的流行,在网络中存在大量的用户公开数据(文字、图片或视频等信息),给心理学研究带来了丰富的数据资源;同时,有研究表明用户的行为可以反映个体的心理特点。因此,本论文旨在探索基于个体面部视频分析的大五人格识别方法。该方法不依赖于用户主动参与,具有大规模施测效率高、无侵入性、生态化等优势,很好地弥补了传统人格评估技术在这些方面的劣势。 本论文共包含以下三个研究: 研究一:大五人格与个体面部变化的相关性分析研究。通过计算面部关键点运动变化与大五人格五个维度得分的相关性发现右边脸颊下半部的轮廓和下巴区域的面部关键点变化的剧烈程度与宜人性呈现出显著的负相关;通过分析大五人格五个维度高低分组间面部关键点运动变化的差异发现在开放性维度上高分组被试左脸颊轮廓区域在运动幅度上显著地高于低分组。该研究得到的结果从数据层面验证了面部活动与人格具有密切的相关性,也说明了基于面部视频分析的大五人格自动识别技术具有可行性。 研究二:基于面部视频分析的大五人格自动识别模型构建技术研究。本论文利用多种机器学习算法构建基于面部70个关键点运动分析的大五人格自动识别模型,并对模型的有效性进行评估。研究中发现基于CatBoost回归算法的人格识别模型表现较好,其效标效度为0. 37一0. 42,分半信度为0. 75~0. 96。实验结果进一步验证了基于面部视频分析的大五人格自动识别技术的可行性和有效性。 研究三:个体面部视频时长对大五人格识别模型效果的影响研究。本论文以5秒为一个递增区间,将原始数据按不同时长进行切片,深入探究数据量对模型预测效果的影响。研究发现视频时长为45秒时,模型在5个维度上均表现出较高的识别率。外倾性、神经质和开放性三个维度在视频时长较短(10秒、15秒)的情况下也表现出了较高的识别率。同时,以45秒视频数据为基础,五个维度的人格的识别效果从研究二中的0. 37一0. 42提升至0.4780.529。研究结果为基于面部视频分析的大五人格自动识别技术的应用研究提供了数据支持。 通过上述三个研究,本论文在基于面部视频分析的大五人格特征自动识别技术研究上展开了深入的探索,提出了一种高效可行的人格评估新模式。
其他摘要Personality refers to an individual's inherent tendency and psychological characteristics to others, things, and his own behavior in social adaptation. Personality affects various aspects of people such as personal consumption habits, performance ability, interpersonal communication, mental health, and even political stance. Personality theory is also widely used in various fields and industries. For example, in recruitment, accurate assessment of personality can help to fully understand the personality characteristics of candidates and assist in predicting their job matching ability. The study of personality has always been a very important subject, and personality assessment techniques are an indispensable method for studying personality. Most of the traditional personality assessment methods are mainly in the form of self-report(such as scales). Although it has a high evaluation accuracy, it still has shortcomings in terms of measurement efficiency. In recent years, with the rapid development of computing technology, the research on the cross-border integration of artificial intelligence and psychology has provided a new idea and method for psychological research. Because of the popularity of social media platforms nowadays, there is a large amount of user public data(such as text, pictures or videos) in the network. It has brought rich data resources to psychological research; at the same time, some studies have shown that user behavior can reflect the psychological characteristics of individuals. Consequently, this paper attempts to use individual videos to study the Big Five personality recognition method based on facial motion analysis. This method does not depend on the autonomous participation of users, and the data sources used for identification are rich. It has the advantages of high efficiency in large一scale measurement, non-invasiveness, and ecologization. It makes up for the disadvantages of traditional personality assessment technology in these aspects. This paper contains the following three studies: Study 1:Correlation analysis of the Big Five personality and individual facial changes. By calculating the correlation between facial key point movement changes and the scores of the five dimensions of the Big Five, It was found that the intensity of the change of the facial key points from the contour of the lower half of the right face to the contour of the chin showed a significant negative correlation with agreeableness; The T-test of facial key point movement changes between the high and low groups of dimensions revealed that the left cheek contour of the subjects in the high group was significantly higher than that in the low group in the openness dimension. The results obtained in this study verifies the close correlation between facial activities and personality from the data level, and also shows that the automatic recognition technology of Big Five personality based on facial video analysis is feasible. Study 2: Research on the construction technology of automatic recognition model of Big Five personality based on facial video analysis. This paper attempts to use a variety of machine learning algorithms to build an automatic recognition model of the Big Five based on the analysis of the movement of 70 key points of the face, and evaluate the effectiveness of the model. The study found that the calibration validity of the personality recognition model based on the CatBoost regression algorithm was 0.37 to 0.42, and the split-half reliability was 0.75 to 0.96. The experimental results further verify the feasibility and effectiveness of the big five personality automatic recognition technology based on facial video analysis. Study 3:Research on the effect of individual facial video duration on the effect of the Big Five personality recognition model. This paper uses 5 seconds as an incremental interval, slices the original data according to different time lengths, and deeply explores the influence of data volume on the prediction effect of the model. The study found that when the video duration was 45 seconds, the model showed a high recognition rate in all five dimensions. The three dimensions of extraversion, neuroticism and openness also showed higher recognition rates when the video duration was shorter (10 seconds, 15 seconds). Simultaneously, the recognition effect of the five dimensions of personality increased from 0.37 to 0.42 in Study 2 to 0.478 to 0.529 based on 45 seconds of video data. The research results provide data support for the application research of automatic recognition technology of Big Five personality based on facial video analysis. Through the above three studies, this paper has carried out in-depth exploration on the automatic recognition technology of Big Five personality characteristics based on facial video analysis, and proposed a new efficient and feasible personality assessment model.
关键词大五人格 面部关键点 面部运动 人格识别 机器学习
学位类型硕士
语种中文
学位名称理学硕士
学位专业健康心理学
学位授予单位中国科学院大学
学位授予地点中国科学院心理研究所
文献类型学位论文
条目标识符https://ir.psych.ac.cn/handle/311026/45077
专题社会与工程心理学研究室
推荐引用方式
GB/T 7714
蔡磊. 基于面部视频分析的大五人格特征自动识别技术研究[D]. 中国科学院心理研究所. 中国科学院大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
蔡磊-硕士学位论文.pdf(1611KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[蔡磊]的文章
百度学术
百度学术中相似的文章
[蔡磊]的文章
必应学术
必应学术中相似的文章
[蔡磊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。