PSYCH OpenIR
Probing Language Models from A Human Behavioral Perspective
Wang, Xintong1; Li, Xiaoyu2; Li, Xingshan3; Biemann, Chris1
摘要

Large Language Models (LLMs) have emerged as dominant foundational models in modern NLP. However, the understanding of their prediction process and internal mechanisms, such as feed-forward networks and multi-head self-attention, remains largely unexplored. In this study, we probe LLMs from a human behavioral perspective, correlating values from LLMs with eye-tracking measures, which are widely recognized as meaningful indicators of reading patterns. Our findings reveal that LLMs exhibit a prediction pattern distinct from that of RNN-based LMs. Moreover, with the escalation of FFN layers, the capacity for memorization and linguistic knowledge encoding also surges until it peaks, subsequently pivoting to focus on comprehension capacity. The functions of self-attention are distributed across multiple heads. Lastly, we scrutinize the gate mechanisms, finding that they control the flow of information, with some gates promoting, while others eliminating information.

2023
语种英语
DOI10.48550/arXiv.2310.05216
发表期刊arXiv
期刊论文类型综述
收录类别EI
引用统计
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/46208
专题中国科学院心理研究所
作者单位1.Department of Informatics, Universität Hamburg, Germany
2.Institute of Psychology, Chinese Academy of Sciences, China
3.Department of Informatics, Technische Universität Berlin, Germany
推荐引用方式
GB/T 7714
Wang, Xintong,Li, Xiaoyu,Li, Xingshan,et al. Probing Language Models from A Human Behavioral Perspective[J]. arXiv,2023.
APA Wang, Xintong,Li, Xiaoyu,Li, Xingshan,&Biemann, Chris.(2023).Probing Language Models from A Human Behavioral Perspective.arXiv.
MLA Wang, Xintong,et al."Probing Language Models from A Human Behavioral Perspective".arXiv (2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Xintong]的文章
[Li, Xiaoyu]的文章
[Li, Xingshan]的文章
百度学术
百度学术中相似的文章
[Wang, Xintong]的文章
[Li, Xiaoyu]的文章
[Li, Xingshan]的文章
必应学术
必应学术中相似的文章
[Wang, Xintong]的文章
[Li, Xiaoyu]的文章
[Li, Xingshan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。