PSYCH OpenIR  > 中国科学院行为科学重点实验室
A Multidimensional Parallel Convolutional Connected Network Based on Multisource and Multimodal Sensor Data for Human Activity Recognition
Wang, Yuhao1; Xu, Hongji1; Zheng, Lina1; Zhao, Guozhen2; Liu, Zhi1; Zhou, Shuang1; Wang, Mengmeng1; Xu, Jie1
第一作者Wang, Yuhao
通讯作者邮箱hongjixu@sdu.edu.cn (xu, hongji) ; liu, zhi
心理所单位排序2
摘要

data-language="eng" data-ev-field="abstract">Human activity recognition (HAR) technology based on wearables has received increasing attention in recent years. The traditional methods have used hand-crafted features to recognize human activities, resulting in shallow feature extraction. With the development of deep learning, an increasing number of researchers have focused on studying deep learning methods. To achieve higher recognition accuracy, the majority of the current HAR research involves multisource and multimodal sensors (MMSs) data. However, due to the limitations in the receptive fields of single-dimensional convolutional kernels, these networks are still infeasible for extracting spatiotemporal features. In this study, a multidimensional parallel convolutional connected (MPCC) deep learning network based on MMS data for HAR is proposed that fully utilizes the advantages of multidimensional convolutional kernels. Moreover, multiscale residual convolutional squeeze-and-excitation (MRCSE) modules are proposed to enrich the diversity of feature information by combining squeeze-and-excitation (SE) blocks. A daily home activity (DHA) data set is constructed based on the requirements for HAR in certain scenarios, such as smart home, and we conduct experiments on the optimal combination of sensor locations on the DHA data set according to a weighted F1∼(FW)-score. Both tenfold and leave-one-subject-out (LOSO) cross-validations (CVs) are used to evaluate the performance of the proposed network. The MPCC-MRCSE network achieves FW-scores of 98.33% and 95.42% on the physical activity monitoring for aging people (PAMAP2) and OPPORTUNITY data sets using tenfold CVs, respectively, and achieves FW-scores of 81.47% on the PAMAP2 when applying an LOSO CV.

关键词Feature extraction Internet of Things Deep learning Monitoring Data mining Convolutional neural networks Wearable computer shuman activity recognition (HAR) leave-one-subject-out (LOSO) cross-validation (CV) multisource and multimodal sensor (MMS) data squeeze-and-excitation (SE) blocks tenfold CV
2023
语种英语
DOI10.1109/JIOT.2023.3265937
发表期刊IEEE Internet of Things Journal
ISSN2327-4662
卷号10期号:16页码:14873-14885
期刊论文类型综述
URL查看原文
收录类别SCI ; EI
引用统计
文献类型期刊论文
条目标识符https://ir.psych.ac.cn/handle/311026/48169
专题中国科学院行为科学重点实验室
作者单位1.Shandong University, School of Information Science and Engineering, Qingdao; 266237, China;
2.Chinese Academy of Sciences, Department of Psychology, Beijing; 100049, China
推荐引用方式
GB/T 7714
Wang, Yuhao,Xu, Hongji,Zheng, Lina,et al. A Multidimensional Parallel Convolutional Connected Network Based on Multisource and Multimodal Sensor Data for Human Activity Recognition[J]. IEEE Internet of Things Journal,2023,10(16):14873-14885.
APA Wang, Yuhao.,Xu, Hongji.,Zheng, Lina.,Zhao, Guozhen.,Liu, Zhi.,...&Xu, Jie.(2023).A Multidimensional Parallel Convolutional Connected Network Based on Multisource and Multimodal Sensor Data for Human Activity Recognition.IEEE Internet of Things Journal,10(16),14873-14885.
MLA Wang, Yuhao,et al."A Multidimensional Parallel Convolutional Connected Network Based on Multisource and Multimodal Sensor Data for Human Activity Recognition".IEEE Internet of Things Journal 10.16(2023):14873-14885.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yuhao]的文章
[Xu, Hongji]的文章
[Zheng, Lina]的文章
百度学术
百度学术中相似的文章
[Wang, Yuhao]的文章
[Xu, Hongji]的文章
[Zheng, Lina]的文章
必应学术
必应学术中相似的文章
[Wang, Yuhao]的文章
[Xu, Hongji]的文章
[Zheng, Lina]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。