PSYCH OpenIR  > 中国科学院心理健康重点实验室
A practical Alzheimer's disease classifier via brain imaging-based deep learning on 85,721 samples
Lu, Bin1,2; Li, Hui-Xian1,2; Chang, Zhi-Kai1,2; Li, Le12; Chen, Ning-Xuan1,2; Zhu, Zhi-Chen1,2; Zhou, Hui-Xia1,2,3; Li, Xue-Ying1,4,13; Wang, Yu-Wei1,2; Cui, Shi-Xian1,4,13; Deng, Zhao-Yu1,2; Fan, Zhen5; Yang, Hong6; Chen, Xiao1,2; Thompson, Paul M.7; Castellanos, Francisco Xavier8,9; Yan, Chao-Gan1,2,10,11
第一作者Bin Lu
通讯作者邮箱yancg@psych.ac.cn (chao-gan yan)
心理所单位排序1
摘要

Beyond detecting brain lesions or tumors, comparatively little success has been attained in identifying brain disorders such as Alzheimer's disease (AD), based on magnetic resonance imaging (MRI). Many machine learning algorithms to detect AD have been trained using limited training data, meaning they often generalize poorly when applied to scans from previously unseen scanners/populations. Therefore, we built a practical brain MRI-based AD diagnostic classifier using deep learning/transfer learning on a dataset of unprecedented size and diversity. A retrospective MRI dataset pooled from more than 217 sites/scanners constituted one of the largest brain MRI samples to date (85,721 scans from 50,876 participants) between January 2017 and August 2021. Next, a state-of-the-art deep convolutional neural network, Inception-ResNet-V2, was built as a sex classifier with high generalization capability. The sex classifier achieved 94.9% accuracy and served as a base model in transfer learning for the objective diagnosis of AD. After transfer learning, the model fine-tuned for AD classification achieved 90.9% accuracy in leave-sites-out cross-validation on the Alzheimer's Disease Neuroimaging Initiative (ADNI, 6,857 samples) dataset and 94.5%/93.6%/91.1% accuracy for direct tests on three unseen independent datasets (AIBL, 669 samples / MIRIAD, 644 samples / OASIS, 1,123 samples). When this AD classifier was tested on brain images from unseen mild cognitive impairment (MCI) patients, MCI patients who converted to AD were 3 times more likely to be predicted as AD than MCI patients who did not convert (65.2% vs. 20.6%). Predicted scores from the AD classifier showed significant correlations with illness severity. In sum, the proposed AD classifier offers a medical-grade marker that has potential to be integrated into AD diagnostic practice.

关键词Alzheimer's disease Convolutional neural network Magnetic resonance brain imaging Sex differences Transfer learning
2022-10-13
语种英语
DOI10.1186/s40537-022-00650-y
发表期刊JOURNAL OF BIG DATA
卷号9期号:1页码:22
期刊论文类型实证研究
收录类别SCI
资助项目Sci-Tech Innovation 2030 -Major Project of Brain Science and Brain-inspired Intelligence Technology[2021ZD0200600] ; National Key R&D Program of China[2017YFC1309902] ; National Natural Science Foundation of China[82122035] ; National Natural Science Foundation of China[81671774] ; National Natural Science Foundation of China[81630031] ; 13th Five-year Informatization Plan of Chinese Academy of Sciences[XXH13505] ; Key Research Program of the Chinese Academy of Sciences[ZDBS-SSW-JSC006] ; Beijing Nova Program of Science and Technology[Z191100001119104] ; Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences[E2CX4425YZ]
出版者SPRINGERNATURE
WOS关键词MRI ; SEX ; AGE ; REVEALS ; NETWORK ; CANCER
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:000867657800001
WOS分区Q1
资助机构Sci-Tech Innovation 2030 -Major Project of Brain Science and Brain-inspired Intelligence Technology ; National Key R&D Program of China ; National Natural Science Foundation of China ; 13th Five-year Informatization Plan of Chinese Academy of Sciences ; Key Research Program of the Chinese Academy of Sciences ; Beijing Nova Program of Science and Technology ; Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.psych.ac.cn/handle/311026/43508
专题中国科学院心理健康重点实验室
中国科学院行为科学重点实验室
通讯作者Yan, Chao-Gan
作者单位1.Inst Psychol, CAS Key Lab Behav Sci, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Dept Psychol, Beijing, Peoples R China
3.Inst Psychol, CAS Key Lab Mental Hlth, Beijing, Peoples R China
4.Sino Danish Ctr Educ & Res, Beijing, Peoples R China
5.Fudan Univ, Huashan Hosp, Dept Neurosurg, Shanghai, Peoples R China
6.Zhejiang Univ, Coll Med, Affiliated Hosp 1, Dept Radiol, Hangzhou, Zhejiang, Peoples R China
7.Univ Southern Calif, Keck Sch Med, Mark & Mary Stevens Inst Neuroimaging & Informat, Imaging Genet Ctr, Los Angeles, CA 90007 USA
8.NYU Grossman Sch Med, Dept Child & Adolescent Psychiat, New York, NY USA
9.Nathan S Kline Inst Psychiat Res, Orangeburg, NY USA
10.Chinese Acad Sci, Inst Psychol, Int Big Data Ctr Depress Res, Beijing, Peoples R China
11.Chinese Acad Sci, Magnet Resonance Imaging Res Ctr, Inst Psychol, Beijing, Peoples R China
12.Beijing Language & Culture Univ, Ctr Cognit Sci Language, Beijing, Peoples R China
13.Univ Chinese Acad Sci, Sino Danish Coll, Beijing, Peoples R China
第一作者单位中国科学院行为科学重点实验室
通讯作者单位中国科学院行为科学重点实验室
推荐引用方式
GB/T 7714
Lu, Bin,Li, Hui-Xian,Chang, Zhi-Kai,et al. A practical Alzheimer's disease classifier via brain imaging-based deep learning on 85,721 samples[J]. JOURNAL OF BIG DATA,2022,9(1):22.
APA Lu, Bin.,Li, Hui-Xian.,Chang, Zhi-Kai.,Li, Le.,Chen, Ning-Xuan.,...&Yan, Chao-Gan.(2022).A practical Alzheimer's disease classifier via brain imaging-based deep learning on 85,721 samples.JOURNAL OF BIG DATA,9(1),22.
MLA Lu, Bin,et al."A practical Alzheimer's disease classifier via brain imaging-based deep learning on 85,721 samples".JOURNAL OF BIG DATA 9.1(2022):22.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A practical Alzheime(1963KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Bin]的文章
[Li, Hui-Xian]的文章
[Chang, Zhi-Kai]的文章
百度学术
百度学术中相似的文章
[Lu, Bin]的文章
[Li, Hui-Xian]的文章
[Chang, Zhi-Kai]的文章
必应学术
必应学术中相似的文章
[Lu, Bin]的文章
[Li, Hui-Xian]的文章
[Chang, Zhi-Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。